eBook: MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems (DRM EPUB)
 
電子書格式: DRM EPUB
作者: Donald Miner, Adam Shook 
分類: Computer programming / software development ,
Computer networking & communications ,
Computer science  
書城編號: 21137263


售價: $345.00

購買後立即進貨, 約需 1-4 天

 
 
製造商: O'Reilly Media
出版日期: 2012/11/21
頁數: 250
ISBN: 9781449341985
 
>> 相關實體書

商品簡介
Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework youre using.Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop.Summarization patterns: get a top-level view by summarizing and grouping dataFiltering patterns: view data subsets such as records generated from one userData organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easierJoin patterns: analyze different datasets together to discover interesting relationshipsMetapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same jobInput and output patterns: customize the way you use Hadoop to load or store data"A clear exposition of MapReduce programs for common data processing patternsthis book is indespensible for anyone using Hadoop."--Tom White, author of Hadoop: The Definitive Guide

* 以上資料僅供參考之用, 香港書城並不保證以上資料的準確性及完整性。
* 如送貨地址在香港以外, 當書籍/產品入口時, 顧客須自行繳付入口關稅和其他入口銷售稅項。

 

 

 

  我的賬戶 |  購物車 |  出版社 |  團購優惠
加入供應商 |  廣告刊登 |  公司簡介 |  條款及細則
 
  香港書城 版權所有 私隱政策聲明
 
  顯示模式: 電腦版 (改為: 手機版)